P2	1,508 (2)	C2C3	1,382 (3)
P2-032	1,570 (2)	C3—C4	1,381 (4)
P2	1,572 (2)	C4C5	1,378 (4)
P1P2	4,213 (1)	C5C6	1,380 (4)
$P1 \cdot \cdot \cdot P2^{i}$	4,262 (1)		
O11—P1—O21	116,9 (1)	O32-P2O42	106,3 (1)
O11—P1—O31	109,8 (1)	C6-C1-C2	120,6 (2)
O21—P1—O31	109,4 (1)	C6-C1-N1	119,3 (2)
O11P1O41	108,7 (1)	C2C1N1	120,1 (2)
O21-P1-O41	106,5 (1)	C3-C2-C1	119,8 (2)
O31—P1—O41	104,8 (1)	C3C2N2	119,8 (2)
O12-P2-O22	118,11 (9)	C1C2N2	120,3 (2)
O12-P2-O32	111,11 (9)	C4C3C2	119,5 (2)
O22—P2—O32	104,97 (9)	C5-C4-C3	120,3 (2)
O12—P2—O42	106,21 (9)	C4C5C6	120,3 (2)
O22—P2—O42	109,55 (9)	C1C6C5	119,3 (2)
C . J			1 . 7

Codes de symétrie: (i) 1 + x, y, z; (ii) 1 - x, -y, 1 - z.

Tableau 3. Distances et liaisons hydrogène (Å, °)

$D - H \cdot \cdot \cdot A$	D—H	$\mathbf{H} \cdot \cdot \cdot \mathbf{A}$	$D \cdot \cdot \cdot A$	D — $H \cdot \cdot \cdot A$		
O31-HO31O21	0,76 (3)	1,82 (3)	2,584 (2)	173 (4)		
O41HO41···O22 ⁱⁱ	0,85 (3)	1,83 (3)	2,667 (2)	171 (3)		
O32—HO32···O21	0,85 (4)	1,72 (4)	2,568 (2)	174 (3)		
042-H042···011 ⁱⁱⁱ	0,80 (4)	1,75 (4)	2,546 (2)	172 (4)		
N1—H1N1···O22 ^{iv}	0,90 (3)	1,95 (3)	2,825 (3)	163 (3)		
$N1 - H2N1 \cdot \cdot \cdot O42^{v}$	0,92 (4)	1,99 (4)	2,845 (3)	154 (3)		
N1—H3N1···O11 ^{vi}	0,89 (4)	2,12 (4)	2,840 (3)	137 (3)		
N2-H1N2···O22 ^{iv}	0,82 (3)	2,06 (3)	2,818 (3)	152 (3)		
N2-H2N2···O41 ^{vii}	0,90(3)	2,22 (3)	2,923 (3)	135 (2)		
$N2-H3N2 \cdot \cdot \cdot O12^{v}$	1,02 (4)	1,64 (4)	2,652 (3)	177 (3)		
Codes de symétrie: (i) $1 - x, -y, 1 - z$; (ii) $1 + x, y, z$; (iii) $1 - x, -y, -z$;						
(iv) $1+x, y, 1+z; (v) x, y, 1+z; (vi) 2-x, -y, 1-z; (vii) 1-x, 1-y, 1-z.$						

La largeur de scan est $(0,7 + 0,35tg\theta)^{\circ}$. Les intensités ont été corrigées des facteurs de Lorentz et de polarisation. La structure a été résolue par les méthodes directes (*SHELXS*86; Sheldrick, 1990) puis affinée par la méthode des moindres carrés (*SHELXL*93; Sheldrick, 1993).

Collection des données: CAD-4 Software (Enraf-Nonius, 1989). Affinement des paramètres de la maille: CAD-4 Software. Réduction des données: MolEN (Fair, 1990). Le dessin de la structure a été obtenu à l'aide du programme ORTEPII (Johnson, 1976).

Les listes des facteurs de structure, des facteurs d'agitation thermique anisotrope, des coordonnées des atomes d'hydrogène et des distances et angles des atomes d'hydrogène ont été déposées au dépôt d'archives de l'UICr (Référence: DU1120). On peut en obtenir des copies en s'adressant à: The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, Angleterre.

Références

- Blessing, R. H. (1986). Acta Cryst. B42, 613-621.
- Brown, I. D. (1976). Acta Cryst. A32, 24-31.
- Enraf-Nonius (1989). CAD-4 Software. Version 5,0. Enraf-Nonius, Delft, Les Pays-Bas.
- Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, Les Pays-Bas.
- Johnson, C. K. (1976). ORTEPII. Rapport ORNL-5138. Oak Ridge National Laboratory, Tennessee, EU.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993). Program for the Refinement of Crystal Structures. Univ. de Göttingen, Allemagne.
- Soumhi, E. H., Driss, A. & Jouini, T. (1994). Mater. Res. Bull. 29, 767-775.
- Soumhi, E. H. & Jouini, T. (1995a). Acta Cryst. C51, 1457-1459.
- Soumhi, E. H. & Jouini, T. (1995b). Acta Cryst. Sous presse.

©1995 International Union of Crystallography Printed in Great Britain – all rights reserved Acta Cryst. (1995). C51, 1885-1889

Stereochemistry of Hydroxylation Reactions on Polycyclic Pyrans

Sandra Ianelli, Mario Nardelli* and Daniele Belletti

Dipartimento di Chimica Generale ed Inorganica, Chimica Analitica, Chimica Fisica, Università degli Studi di Parma, Centro di Studio per la Strutturistica Diffrattometrica del CNR, Viale delle Scienze 78, I-43100 Parma, Italy

BRIGITTE JAMART-GRÉGOIRE, SOPHIE MERCIER-GIRARDOT AND PAUL CAUBÈRE

Laboratoire de Chimie Organique I, UA CNRS No. 457, Université de Nancy I, BP 239, 54506 Vandoeuvre-Les-Nancy CEDEX, France

(Received 12 December 1994; accepted 31 January 1995)

Abstract

The configurations at the ring junctions of the tricyclic pyrans (1RS,2SR,6RS,7RS,8RS)-6,7-dihydroxy-3-oxatricyclo[6.6.0.0^{2,7}]tetradec-1-yl acetate, C₁₅H₂₄O₅, and (1RS,2RS,6SR,7SR,8RS)-6,7-dihydroxy-3-oxatricyclo[6.6.0.0^{2,7}]tetradec-1-yl acetate monohydrate, C₁₅H₂₄O₅.H₂O, indicate that, in the reactions leading to these compounds, hydroxylation always takes place on the less hindered side of the substrate, and that the heterocycle exerts greater steric hindrance than the carbocycle. The structures and conformations of the two stereoisomers and their hydrogen bonding are discussed.

Comment

During our studies on the chemistry of new polycyclic pyrans (Jamart-Grégoire, Mercier-Girardot, Ianelli, Nardelli & Caubère, 1995), we had to consider the bishydroxylation of compound (1) and the stereochemistry of the glycols (2) obtained according to the scheme below [isomers have a or b appended to the compound identifier, *e.g.* (1a) and (1b)].

Acta Crystallographica Section C ISSN 0108-2701 ©1995

None of the usual spectroscopic data allowed us to define the structures of (2). Therefore, we undertook the X-ray crystal structure analysis of two representative compounds (2a) and (2b) (n = 4), for which suitable single crystals were obtained.

Besides the knowledge of the molecular structures of (2), the results of these analyses led to the interesting mechanistic conclusion that the hydroxylations always take place on the less hindered side of the substrate (1) (see scheme below) and that in (1b) the steric hindrance generated by the heterocyclic part of the molecule is much more important than that generated by the carbocycle.

The crystals of the two compounds not only differ in molecular configuration, but also because compound (2b) crystallizes with a water molecule and this, through hydrogen bonding, influences both molecular conformation and packing. As shown in Fig. 1, the configuration is *cis-syn-cis* for compound (2a) and *cis-anti-cis* for (2b). For the same S configuration at C2 and S,R at the C1—C5 junction (using the atom labelling of Fig. 1), the configuration at the C6—C7 junction is opposite in the two compounds: S,S for (2a) and R,R for (2b). The enantiomers of these two molecules are also present in the crystals, both space groups being centrosymmetric.

The conformations about the C1—C2, C1—C5 and C6—C7 bonds and the orientation of the acetyl substituents are described by the torsion angles quoted in Tables 2 and 4, which show that the C1—O1 bond is synclinal to C2—O2 in both compounds [more open in compound (2*a*)], and anticlinal and antiperiplanar to C5—O3 in compounds (2*a*) and (2*b*), respectively; C6— O4 is anticlinal to C7—C8 in both compounds.

The parameters in Table 5 allow direct comparison of puckering, conformation and relative position of the rings. The total puckering amplitude of ring A is remarkably reduced in compound (2b) where O3 is involved in a short non-bonded repulsive interaction $[O3 \cdots O4 = 2.671 (2) \text{ Å}]$, whereas it acts as a weak proton acceptor $[C13 - H132 \cdots O3 = 2.53 (2) \text{ Å}]$ in (2a);

Fig. 1. ORTEP (Johnson, 1965) drawings of the molecules of compounds (2a) and (2b). Ellipsoids are drawn at the 50% probability level.

also, the different position of the O2—H hydroxy group in the two compounds may influence the puckering of these rings.

The cyclooctane rings in (2a) and (2b) have similar puckering amplitudes and conformations, as shown by the respective average bond distances, endocyclic bond angles and torsion angles: $\langle d(C--C) \rangle = 1.538$ (6), 1.531 (5) Å, $\langle \alpha \rangle = 116.8$ (9), 117.5 (10)°, $\langle |\tau| \rangle = 74.5$, 67.7°. These values agree fairly well with the averages of those calculated by Hendrickson (1967) for the boatchair (BC) [++-+/--+-] conformation of unsubstituted cyclooctane, $\langle \alpha \rangle = 116.2$, $\langle |\tau| \rangle = 69.2^{\circ}$, for which the sum of the non-bonded energies is 46.4 kJ mol⁻¹.

The orientation of the acetyl substituent is defined by the C7—C6—O4—C14 torsion angle whose values (see Tables 2 and 4) indicate that the O4—C14 bond is antiperiplanar to the C6—C7 bond in both molecules. The non-bonded energy profiles, calculated by rotating the acetyl group about the C6—O4 bond in the free molecule, show a well defined minimum for the conformation found experimentally in the crystals of both compounds. This finding indicates that intramolecular steric hindrance imposes the observed orientation of that substituent, while the orientation of the carbonyl plane about the C14—O4 bond is essentially determined by the intermolecular hydrogen bonds involving the O5 atom (see Tables 2 and 4).

The orientation of the two hydroxyl groups is determined by the hydrogen bonds (see Tables 2 and 4) that they form with the tetrahydropyran and carbonyl O atoms of adjacent molecules in (2*a*), while for (2*b*) their interaction with the water molecule is more important. As shown in Fig. 2, the molecules in crystals of (2*b*) are packed in layers parallel to the *ac* plane, with sheets of hydrophobic and hydrophilic contacts at b = 0 and $b = \frac{1}{2}$, respectively.

Fig. 2. *PLUTO* (Motherwell & Clegg, 1976) projection of the unit-cell contents of compound (2b). For clarity, only the H atoms involved in hydrogen bonding are represented.

A Schomaker & Trueblood (1968) **TLS** rigid-body analysis using the *THMV* program (Trueblood, 1984), shows a satisfactory agreement between the observed and calculated U_{ij} parameters: wR_U is 0.115 and 0.099 for (2*a*) and (2*b*), respectively, improving to 0.092 and 0.069, respectively, if internal motions are considered according to Dunitz & White (1973).

Experimental

Compounds (2*a*) and (2*b*) were obtained by esterification (Hogle, Treglich & Vorbroggen, 1972) followed by bishydroxylation (Minato, Yamamoto & Tsuji, 1990) of the (1RS,2RS,8SR) and (1RS,2SR,8SR) isomers of 3-oxatricyclo[$6.6.0.0^{2,7}$]tetradec-6-en-1-ol, respectively, synthesized by Jamart-Grégoire, Mercier-Girardot, Ianelli, Nardelli & Caubère (1995).

Compound (2a)

Crystal data

CieHarOs	$C_{\rm H}$ K α radiation
$M_r = 284.35$	$\lambda = 1.5418 \text{ Å}$
Monoclinic	Cell parameters from 30
$P2_1/n$	reflections
a = 17.631(7) Å	$\theta = 24 - 40^{\circ}$
b = 11.843 (4) Å	$\mu = 0.792 \text{ mm}^{-1}$
c = 6.984(1) Å	T = 293 (2) K
$\beta = 92.36(3)^{\circ}$	Tablet

$$V = 1457.1 (8) \text{ Å}^3$$

 $Z = 4$
 $D_x = 1.296 \text{ Mg m}^{-3}$

Data collection

Siemens AED diffractometer Profile data from θ -2 θ scans Absorption correction: none 2997 measured reflections 2771 independent reflections 219 observed reflections $[I > 2\sigma(I)]$ $R_{int} = 0.0451$

Refinement

01

02

03 04

05

CI

C2 C3 C4 C5 C6

C7

C8 C9

C10

C11

C12

C13

C14 C15

Refinement on F^2	$\Delta \rho_{\rm max} = 0.74 \ {\rm e} \ {\rm \AA}^{-3}$
R(F) = 0.056	$\Delta \rho_{\rm min} = -0.28 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.1553$	Extinction correction:
S = 1.112	SHELXL93 (Sheldrick,
2765 reflections	1993)
278 parameters	Extinction coefficient:
All H-atom parameters	0.043 (3)
refined	Atomic scattering factors
$w = 1/[\sigma^2(F_o^2) + (0.1121P)^2]$	from International Tables
+ 0.3606P]	for Crystallography (1992,
where $P = (F_o^2 + 2F_c^2)/3$	Vol. C, Tables 4.2.6.8 and
$(\Delta/\sigma)_{\rm max} = -0.001$	6.1.1.4)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$ for (2a)

$U_{\rm eq} = (1$	/3) $\sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i . \mathbf{a}_j$	•
-------------------	--	---

x	у	Z	U_{eq}
0.74624 (9)	0.9071 (1)	0.3417 (2)	0.0473 (5)
0.8391 (1)	0.9653(1)	0.0309 (3)	0.0566 (6)
0.75458 (8)	0.6479(1)	0.1430 (2)	0.0507 (5)
0.56444 (7)	0.7436(1)	0.0780 (2)	0.0394 (4)
0.58704 (9)	0.5609(1)	0.1390 (3)	0.0553 (5)
0.7345(1)	0.8572(1)	0.1585 (3)	0.0374 (5)
0.8081 (1)	0.8555 (2)	0.0505 (3)	0.0422 (6)
0.8642(1)	0.7742 (2)	0.1501 (4)	0.0558 (8)
0.8262(1)	0.6734 (2)	0.2371 (5)	0.0685 (11)
0.7029(1)	0.7365 (1)	0.1751 (3)	0.0377 (6)
0.6419(1)	0.7621 (1)	0.0147 (3)	0.0359 (5)
0.6611 (1)	0.8904 (1)	0.0410 (3)	0.0374 (6)
0.6673(1)	0.9682 (2)	-0.1313 (3)	0.0440 (6)
0.5911 (1)	1.0112 (2)	-0.2142 (4)	0.0540 (7)
0.5356(1)	0.9186 (2)	-0.2768 (3)	0.0497 (7)
0.5676(1)	0.8311 (2)	-0.4147 (3)	0.0506 (7)
0.5860(1)	0.7153 (2)	-0.3272 (3)	0.0470 (6)
0.6526(1)	0.7064 (2)	-0.1785 (3)	0.0415 (6)
0.5444 (1)	0.6404 (2)	0.1342 (3)	0.0414 (6)
0.4634(1)	0.6368 (2)	0.1889 (5)	0.0581 (8)

Table 2. Selected geometric parameters (Å, °) for (2a)

1.416 (2)	C3C4	1.510 (3)
1.419 (2)	C5—C6	1.550 (3)
1.414 (2)	C6-C13	1.521 (3)
1.431 (3)	C6—C7	1.566 (2)
1.335 (2)	C7—C8	1.523 (3)
1.470 (2)	C8—C9	1.528 (3)
1.205 (2)	C9-C10	1.522 (3)
1.527 (3)	C10-C11	1.537 (3)
1.541 (2)	C11—C12	1.531 (3)
1.555 (3)	C12—C13	1.539 (3)
1.526 (3)	C14—C15	1.494 (3)
	1.416 (2) 1.419 (2) 1.414 (2) 1.431 (3) 1.335 (2) 1.470 (2) 1.205 (2) 1.527 (3) 1.541 (2) 1.555 (3) 1.526 (3)	$\begin{array}{ccccc} 1.416\ (2) & C3-C4 \\ 1.419\ (2) & C5-C6 \\ 1.414\ (2) & C6-C13 \\ 1.431\ (3) & C6-C7 \\ 1.335\ (2) & C7-C8 \\ 1.470\ (2) & C8-C9 \\ 1.205\ (2) & C9-C10 \\ 1.527\ (3) & C10-C11 \\ 1.541\ (2) & C11-C12 \\ 1.555\ (3) & C12-C13 \\ 1.526\ (3) & C14-C15 \\ \end{array}$

 $0.36 \times 0.24 \times 0.19 \text{ mm}$ Colourless

 $\theta_{\text{max}} = 70.08^{\circ}$ $h = -21 \rightarrow 21$ $k = 0 \rightarrow 14$ $l = 0 \rightarrow 8$ 1 standard reflection monitored every 50 reflections intensity variation: within statistical fluctuation

C15H24O5 AND C15H24O5.H2O

$\begin{array}{c} C5 & - O3 & - C4 \\ C14 & - O4 & - C6 \\ 01 & - C1 & - C2 \\ 01 & - C1 & - C5 \\ C2 & - C1 & - C5 \\ 01 & - C1 & - C7 \\ C2 & - C1 & - C7 \\ C5 & - C1 & - C7 \\ 02 & - C2 & - C3 \\ 02 & - C2 & - C1 \end{array}$	109.4 (2) 119.1 (1) 110.9 (2) 111.0 (2) 110.0 (2) 117.3 (2) 116.7 (2) 88.7 (13) 112.2 (2) 111.9 (2)	04-C6-C5 C13-C6-C7 C13-C6-C7 C13-C6-C7 C5-C6-C7 C8-C7-C1 C8-C7-C6 C1-C7-C6 C7-C8-C9 C10-C9-C	5 7 7 7 8	112.2 (2) 116.7 (2) 107.9 (13) 119.5 (2) 88.02 (13) 119.0 (2) 121.1 (2) 89.3 (13) 114.2 (2) 114.4 (2)	291 para All H-at refined $w = 1/[\sigma]$ where $(\Delta/\sigma)_{ma}$	timeters om parameters $d^{2}(F_{o}^{2}) + (0.1)$ $P = (F_{o}^{2} + 1)$ $H_{xx} = -0.002$	$(2750)^{2} (2750)^{2$	Extinction coeffic 0.0090 (4) Atomic scattering from Internation for Crystallogr Vol. C, Tables 6.1.1.4)	ient: factors onal Tables aphy (1992, 4.2.6.8 and
C3C2C1 C4C3C2 O3C4C3 O3C5C1	109.3 (2) 113.1 (2) 112.3 (2) 116.0 (2)	C9-C10-C C12-C11- C11-C12- C6-C13-C	C10 C13 C12	114.7 (2) 115.5 (2) 118.3 (2) 116.8 (2)	Table 3 iso	. Fraction tropic displ	al atomic acement p	coordinates and parameters (Ų) f	equivalent or (2b)
C1C5C6 C1C5C6 O4C6C13	117.6 (2) 90.4 (1) 110.6 (2)	05C14C 05C14C 04C14C	04 015 015	123.4 (2) 124.9 (2) 111.6 (2)		Ueq	$=(1/3)\sum_{i}\sum_{i}\sum_{i}\sum_{j}\sum_{j}\sum_{j}\sum_{i}\sum_{j}\sum_{j}\sum_{j}\sum_{i}\sum_{j}\sum_{j}\sum_{j}\sum_{i}\sum_{j}\sum_{j}\sum_{j}\sum_{i}\sum_{j}\sum_{j}\sum_{j}\sum_{j}\sum_{j}\sum_{j}\sum_{j}\sum_{j$	$\Sigma_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j$.	
01C1C2O2 01C1C2C3 C7C1C2C3 01C1C5O3 C2C1C5O3 C7C1C5C6	-57.2 (2) 67.7 (2) 80.7 (2) -55.5 (2) -105.5 (2) 17.6 (2) 14.4 (1)	C2-C1-C5 C5-C6-C7 O4-C6-C7 C13-C6-C C13-C6-C C14-O4-C	5	$\begin{array}{r} -103.6 (2) \\ 14.2 (1) \\ -109.2 (2) \\ -105.6 (2) \\ 18.3 (3) \\ -156.4 (2) \end{array}$	O1 O2 O3 O4 O5 O1W C1 C2	x 0.51540 (5) 0.54946 (7) 0.65079 (5) 0.67687 (4) 0.63825 (6) 0.58124 (6) 0.58294 (6) 0.60337 (7)	y 0.30739 0.46060 0.35294 0.19642 0.21556 0.61840 0.32503 0.40489	$ \begin{array}{cccc} & & & & & & \\ & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & &$	0.0456 (3) 0.0639 (5) 0.0506 (3) 0.0420 (3) 0.0659 (4) 0.0648 (4) 0.0385 (4) 0.0443 (4)
$D - H \cdots A$ 01 - H10 \cdots 02 01 - H10 \cdots 03^{i} 02 - H20 \cdots 05^{i}	D—H 0.81 (3) 0.81 (3) 0.88 (3)	H···A 2.57 (3) 2.10 (3) 1.98 (3)	D····A 2.857 (3) 2.854 (2) 2.837 (3)	D—H···A 103 (2) 155 (3) 167 (3)	C3 C4 C5 C6	0.66337 (8) 0.65379 (9) 0.59534 (7) 0.61518 (6)	0.4383 (0.4347 (0.31097 0.22300	$ \begin{array}{c} (1) & 0.4755 (2) \\ (1) & 0.6357 (2) \\ (8) & 0.6114 (2) \\ (8) & 0.5797 (1) \\ \end{array} $	0.0529 (6) 0.0552 (6) 0.0417 (4) 0.0389 (4)
Symm	etry code: (i)	$\frac{3}{2} - x, \frac{1}{2} + y,$	$\frac{1}{2}-z.$		C7 C8 C9	0.62693 (6) 0.60885 (8) 0.65474 (9)	0.25042 0.19991 0.1292 ($\begin{array}{ccc} (8) & 0.4228 (1) \\ (9) & 0.2863 (2) \\ (1) & 0.2683 (2) \\ \end{array}$	0.0372 (4) 0.0434 (4) 0.0532 (5)
Compound (2b) Crystal data			diation		C10 C11 C12 C13 C14 C15	0.65932 (9) 0.5934 (1) 0.5773 (1) 0.55983 (7) 0.68151 (8) 0.7472 (1)	0.0675 (0.0389 (0.0728 (0.1619 (0.19406 0.1617 ($\begin{array}{cccc} (1) & 0.3920 & (2) \\ (1) & 0.4367 & (2) \\ (1) & 0.5827 & (2) \\ (1) & 0.5911 & (2) \\ (9) & 0.8097 & (2) \\ (1) & 0.8745 & (2) \end{array}$	0.0574 (6) 0.0606 (6) 0.0597 (6) 0.0500 (5) 0.0473 (5) 0.0610 (6)
$M_r = 302.37$		$\lambda = 1.541$	8 Å neters fro		T- 1-1-	A C.1			2) (
$C2/c$ $a = 20.355 (7) \text{ Å}$ $b = 16.648 (5) \text{ Å}$ $c = 9.181 (2) \text{ Å}$ $\beta = 97.14 (4)^{\circ}$ $V = 3087 (2) \text{ Å}^{3}$ $Z = 8$ $D_{x} = 1.301 \text{ Mg m}^{-1}$	-3	cell para reflectio $\theta = 20-39$ $\mu = 0.787$ T = 293 (Small pris 0.51 × 0. Pale yello	0 mm ⁻¹ 2) K 38 × 0.2	9 mm	Table 01C1 02C2 03C5 03C4 04C14 04C6 05C14 C1C2 C1C5 C1C7 C2C3	4. Selected	geometrue 1.422 (2) 1.433 (2) 1.419 (2) 1.433 (2) 1.345 (2) 1.453 (2) 1.526 (2) 1.556 (2) 1.551 (2)	c parameters (A, C3-C4 C5-C6 C6-C13 C6-C7 C7-C8 C8-C9 C9-C10 C10-C11 C11-C12 C12-C13 C14-C15	for (2b) for (2b) 1.509 (2) 1.556 (2) 1.518 (2) 1.516 (2) 1.525 (2) 1.525 (2) 1.527 (3) 1.528 (3) 1.530 (3) 1.494 (2)
Data collection Siemens AED diffr θ -2 θ scans Absorption correcting none 5759 measured reff 2939 independent of 282 observed reffe $[I > 2\sigma(I)]$ $R_{int} = 0.0291$	actometer ion: ections reflections ections	$\theta_{max} = 70$ h = -24 k = -20 l = -11 1 standard monitor reflect intensit statis	21° $\rightarrow 17$ $\rightarrow 20$ $\rightarrow 8$ d reflection red every ctions y variation tical fluct	n 50 n: within tuation	$\begin{array}{c} C5-03-\\ C14-04-\\ 01-C1-\\ 01-C1-\\ C2-C1-\\ 01-C1-\\ C2-C1-\\ C5-C1-\\ 02-C2-\\ 02-C2-\\ 02-C2-\\ C3-C2-\\ C3-C2-\\ C4-C3-\\ 03-C5-\\ 03-C5-\\ 03-C5-\\ 04-C6-\\ \end{array}$	-C4 C6 -C2 -C5 -C7 -C7 -C7 -C7 -C7 -C3 -C1 -C1 -C2 -C3 -C1 -C2 -C3 -C1 -C2 -C3 -C1 -C2 -C3 -C3 -C3 -C3 -C3 -C3 -C4 -C4 -C4 -C4 -C5 -C7 -C7 -C7 -C7 -C7 -C7 -C7 -C7	$\begin{array}{c} 112.8 \ (1) \\ 118.8 \ (1) \\ 111.1 \ (1) \\ 108.2 \ (1) \\ 119.1 \ (1) \\ 119.1 \ (1) \\ 110.2 \ (1) \\ 117.6 \ (1) \\ 88.5 \ (1) \\ 109.4 \ (1) \\ 110.0 \ (1) \\ 110.6 \ (1) \\ 110.6 \ (1) \\ 110.6 \ (1) \\ 110.6 \ (1) \\ 110.4 \ (1) \\ 109.9 \ (1) \\ 88.3 \ (1) \\ 111.0 \ (1) \end{array}$	$\begin{array}{c} 04-C6-C5\\ C13-C6-C5\\ 04-C6-C7\\ C13-C6-C7\\ C5-C6-C7\\ C8-C7-C1\\ C8-C7-C6\\ C1-C7-C6\\ C1-C7-C6\\ C7-C8-C9\\ C10-C9-C8\\ C9-C10-C11\\ C10-C11-C12\\ C11-C12-C13\\ C12-C13-C6\\ 05-C14-04\\ 05-C14-C15\\ 04-C14-C15\\ \end{array}$	$114.6 (1) \\113.7 (1) \\110.5 (1) \\117.2 (1) \\88.3 (1) \\117.3 (1) \\123.5 (1) \\88.0 (1) \\115.4 (1) \\115.8 (2) \\114.9 (1) \\115.8 (2) \\114.4 (2) \\118.6 (1) \\117.6 (1) \\124.1 (1) \\124.9 (2) \\111.0 (1) \\$
Refinement on F^2 R(F) = 0.0374 $wR(F^2) = 0.1024$ S = 1.123 2938 reflections		$\Delta \rho_{\text{max}} = 0$ $\Delta \rho_{\text{min}} = -$ Extinction <i>SHELX</i> 1993)	0.30 e Å ⁻ -0.18 e A^{-} n correctio (L93 (She	-3 A - 3 on: ldrick,	01C1 C5C1 C7C1 C2C1 01C1 C7C1	-C2O2 -C2C3 -C2C3 -C2C3 -C5C6 -C5C6 -C5O3	37.1 (2) -89.6 (2) 31.1 (2) -73.9 (2) -29.6 (2) 91.2 (1) 91.5 (1)	$\begin{array}{c} C7-C1-C5-C6\\ 01-C1-C5-03\\ C5-C6-C7-C1\\ 04-C6-C7-C8\\ C13-C6-C7-C1\\ C13-C6-C7-C8\\ C14-04-C6-C7\end{array}$	$\begin{array}{r} -19.6 (1) \\ -157.7 (1) \\ -19.6 (1) \\ 102.9 (1) \\ 96.3 (1) \\ -25.5 (2) \\ 159.8 (1) \end{array}$

· ·

$D - H \cdots A$	D—H	HA	$D \cdots A$	$D = \mathbf{H} \cdot \cdot \cdot \mathbf{A}$
O2—H2O· · ·O1₩	0.62 (5)	2.22 (5)	2.821 (2)	162 (6)
O1₩—H2OW···O2	0.87 (7)	2.25 (7)	2.821 (2)	123 (6)
01—H10···01W	0.83 (4)	1.91 (4)	2.735 (2)	173 (4)
01₩—H10W···O5 ⁱⁱ	0.84 (3)	2.43 (2)	3.156 (2)	146 (2)
O1W—H1OW···O3 ⁱⁱ	0.84 (3)	2.50 (3)	3.194 (2)	141 (2)

Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) x, 1 - y, $z - \frac{1}{2}$.

Table 5. Conformation of the rings and dihedral angles (°) between the ring planes

 Q_T = total puckering amplitude (Å) (Cremer & Pople, 1975), DAP = minimum displacement asymmetry parameter (Nardelli, 1983b), BC = boat-chair, T = twist, S = sofa. A, B and C denote the six-, fourand eight-membered rings, respectively.

	Q_T	DAP	Conformation
Compound (2a)			
A	0.731 (2)	D2(C3) = 0.0461 (8)	T
В	0.0503 (5)		
С	1.205 (2)	DS(C8) = 0.0867 (8)	BC
Compound (2b)			
A	0.512 (2)	DS(C1) = 0.0274 (9)	S
В	-0.0695 (3)		
С	1.192 (2)	DS(C8) = 0.0468 (7)	BC
Dihedral angles	A/B	B/C	A/C
(2a)	135.3 (1)	114.0(1)	155.6(1)
(2b)	114.7 (1)	126.4 (1)	147.5 (1)

The integrated intensities were obtained by a modified version (Belletti, Ugozzoli, Cantoni & Pasquinelli, 1979) of the Lehmann & Larsen (1974) peak-profile analysis procedure.

Both structures were solved by direct methods and refined by anisotropic full-matrix least squares. All the H atoms were found from the $\Delta \rho$ maps and refined isotropically. The H2OW atom of compound (2b) was found too near the O1W atom [0.62 (5) Å], so its position was corrected by shifting it along the H2OW-O1W direction at an ZO1W-H2OW distance equal to that found for O1W-H1OW.

The calculations were carried out on the ENCORE91 and GOULD-POWERNODE 6040 computers of the Centro di Studio per la Strutturistica Diffrattometrica del CNR (Parma), and on a COMPAQ-486c portable computer.

For both compounds, data collection: local programs; cell refinement: LQPARM (Nardelli & Mangia, 1984); data reduction: local programs. Program(s) used to solve structures: SHELXS86 (Sheldrick, 1990) for (2a); SIR88 (Burla, et al., 1988) for (2b). For both compounds, program(s) used to refine structures: SHELXL93 (Sheldrick, 1993); molecular graphics: ORTEP (Johnson, 1965); PLUTO (Motherwell & Clegg, 1976); software used to prepare material for publication: PARST (Nardelli, 1983); PARSTCIF (Nardelli, 1991).

Financial support from the European Community Commission under contract N-SC1000657 is gratefully acknowledged.

References

Belletti, D., Ugozzoli, F., Cantoni, A. & Pasquinelli, G. (1979). Gestione on Line di Diffrattometro a Cristallo Singolo Siemens AED con Sistema General Automation Jumbo 220. Internal Reports 1-3/79. Centro di Studio per la Strutturistica Diffrattometrica del CNR, Parma, Italy.

Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Polidori, G., Spagna, R. & Viterbo, D. (1989). J. Appl. Cryst. 22, 389-393.

- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358. Dunitz, J. D. & White, D. N. J. (1973). Acta Cryst. A29, 93-94.
- Hendrickson, J. B. (1967). J. Am. Chem. Soc. 89, 7036-7043. Hogle, G., Treglich, W. & Vorbroggen, H. (1972). Synthesis, pp. 619-
- 621.
- Jamart-Grégoire, B., Mercier-Girardot, S., Ianelli, S., Nardelli, M. & Caubère, P. (1995). Tetrahedron, pp. 1973-1984.
- Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- Lehmann, M. S. & Larsen, F. K. (1974). Acta Cryst. A30, 580-589.
- Minato, M., Yamamoto, K. & Tsuji, J. (1990). J. Org. Chem. 55, 766-768.
- Motherwell, W. D. S. & Clegg, W. (1976). PLUTO. Program for Plotting Molecular and Crystal Structures. Univ. of Cambridge, England.
- Nardelli, M. (1983a). Comput. Chem. 7, 95-98.
- Nardelli, M. (1983b), Acta Cryst. C39, 1141-1142.
- Nardelli, M. (1991). PARSTCIF. Program for Setting up a CIF from the Output of PARST. Univ. of Parma, Italy.
- Nardelli, M. & Mangia, A. (1984). Ann. Chim. (Rome), 74, 163-174.
- Schomaker, V. & Trueblood, K. N. (1968). Acta Cryst. B24, 63-76.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.
- Trueblood, K. N. (1984). THMV. Program for Thermal Motion Analysis. Univ. of California, Los Angeles, USA.

Acta Cryst. (1995). C51, 1889-1891

3-Methyl-6-(4-methylpiperazin-1-yl)-11Hpyrido[2,3-b][1,4]benzodiazepine

LÉON DUPONT

Unité de Cristallographie, Institut de Physique B5, Université de Liège au Sart Tilman, B-4000 Liège, Belgium

JEAN-FRANÇOIS LIÉGEOIS, FRANÇOISE ROGISTER AND JACQUES DELARGE

Laboratoire de Chimie Pharmaceutique, Institut de Pharmacie F1, Université de Liège, Rue Fusch 5, B-4000 Liège, Belgium

(Received 11 January 1995; accepted 7 March 1995)

Abstract

The synthesis and crystal structure of C₁₈H₂₁N₅ has been undertaken as part of a study of dopamine receptors. The diazepine ring has a boat conformation. The four C atoms of the outer ring junctions are almost coplanar; the maximum deviation from their mean plane

Lists of structure factors, anisotropic displacement parameters and H-atom coordinates have been deposited with the IUCr (Reference: MU1167). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.